Skip to main content
Log in

A three-dimensional mesh-free model for analyzing multi-phase flow in deforming porous media

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Fully coupled flow-deformation analysis of deformable multiphase porous media saturated by several immiscible fluids has attracted the attention of researchers in widely different fields of engineering. This paper presents a new numerical tool to simulate the complicated process of two-phase fluid flow through deforming porous materials using a mesh-free technique, called element-free Galerkin (EFG) method. The numerical treatment of the governing partial differential equations involving the equilibrium and continuity equations of pore fluids is based on Galerkin’s weighted residual approach and employing the penalty method to introduce the essential boundary conditions into the weak forms. The resulting constrained Galerkin formulation is discretized in space using the same EFG shape functions for the displacements and pore fluid pressures which are taken as the primary unknowns. Temporal discretization is achieved by utilizing a fully implicit scheme to guarantee no spurious oscillatory response. The validity of the developed EFG code is assessed via conducting a series of simulations. According to the obtained numerical results, adopting the appropriate values for the EFG numerical factors can warrant the satisfactory application of the proposed mesh-free model for coupled hydro-mechanical analysis of applied engineering problems such as unsaturated soil consolidation and infiltration of contaminant into subsurface soil layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Moving least square.

  2. Finite element.

  3. Finite volume.

  4. Light non-aqueous phase liquid.

References

  1. Ehlers W, Graf T, Ammann M (2004) Deformation and localization analysis of partially saturated soil. Comput Methods Appl Mech Eng 193:2885–2910

    Article  ADS  MATH  Google Scholar 

  2. Lewis RW, Sukirman Y (1993) Finite element modeling of three-phase flow in deforming saturated oil reservoirs. Int J Numer Anal Methods Geomech 17:577–598

    Article  MATH  Google Scholar 

  3. Lewis RW, Sukirman Y (1993) Finite element modeling for simulating the surface subsidence above a compacting hydrocarbon reservoir. Int J Numer Anal Methods Geomech 18:619–639

    Article  Google Scholar 

  4. Dagger MAS (1997) A fully-coupled two-phase flow and rock deformation model for reservoir rock, Ph.D. thesis, University of Oklahoma

  5. Shu Z (1999) A dual-porosity model for two-phase flow in deforming porous media, Ph.D. thesis, University of Oklahoma

  6. Lee IS (2008) Computational techniques for efficient solution of discretized Biot’s theory for fluid flow in deformable porous media, Ph.D. thesis, Virginia Polytechnic Institute and State University

  7. Rahman NA, Lewis RW (1999) Finite element modeling of multiphase immiscible flow in deforming porous media for subsurface systems. Comput Geotech 24:41–63

    Article  Google Scholar 

  8. Ngien SK, Rahman NA, Lewis RW, Ahmad K (2011) Numerical modeling of multiphase immiscible flow in double-porosity featured groundwater systems. Int J Numer Anal Methods Geomech. doi:10.1002/nag.1055

    Google Scholar 

  9. Li X, Zienkiewicz OC, Xie YM (1990) A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution. Int J Numer Methods Eng 30:1195–1212

    Article  MATH  Google Scholar 

  10. Li X, Zienkiewicz OC (1992) Multiphase flow in deforming porous media and finite element solutions. Comput Struct 45:211–227

    Article  MATH  Google Scholar 

  11. Schrefler BA, Zhan X (1993) A fully coupled model for water flow and airflow in deformable porous media. Water Resour Res 29:155–167

    Article  ADS  Google Scholar 

  12. Schrefler BA, D’Alpaos L, Zhan X, Simoni L (1994) Pollutant transports in deforming porous media. Eur J Mech A/Solids 13:175–194

    MATH  Google Scholar 

  13. Schrefler BA, Zhan X, Simoni L (1995) A coupled model for water flow, airflow and heat flow in deformable porous media. Int J Numer Methods Heat Fluid Flow 5:531–547

    Article  MATH  Google Scholar 

  14. Lewis RW, Ghafouri HR (1997) A novel finite element double porosity model for multiphase flow through deformable fractured porous media. Int J Numer Anal Methods Geomech 21:789–816

    Article  Google Scholar 

  15. Schrefler BA, Wang X, Salomoni VA, Zuccolo G (1999) An efficient parallel algorithm for three-dimensional analysis of subsidence above gas reservoirs. Int J Numer Methods Fluids 31:247–260

    Article  MATH  Google Scholar 

  16. Schrefler BA, Scotta R (2001) A fully coupled dynamic model for two-phase fluid flow in deformable porous media. Comput Methods Appl Mech Eng 190:3223–3246

    Article  ADS  MATH  Google Scholar 

  17. Pao WKS, Lewis RW, Masters I (2001) A fully coupled hydro-thermo-poro-mechanical model for black oil reservoir simulation. Int J Numer Anal Methods Geomech 25:1229–1256

    Article  MATH  Google Scholar 

  18. Lewis RW, Pao WKS (2002) Numerical simulation of three-phase flow in deforming fractured reservoirs. Oil Gas Sci Technol 57:499–514

    Article  Google Scholar 

  19. Pao WKS, Lewis RW (2002) Three-dimensional finite element simulation of three-phase flow in a deforming fissured reservoir. Comput Methods Appl Mech Eng 191:2631–2659

    Article  ADS  MATH  Google Scholar 

  20. Wang X, Schrefler BA (2003) Fully coupled thermo-hydro-mechanical analysis by an algebraic multigrid method. Eng Comput 20:211–229

    Article  MATH  Google Scholar 

  21. Klubertanz G, Bouchelaghem F, Laloui L, Vulliet L (2003) Miscible and immiscible multiphase flow in deformable porous media. Math Comput Model 37:571–582

    Article  MATH  Google Scholar 

  22. Laloui L, Klubertanz G, Vulliet L (2003) Solid–liquid–air coupling in multiphase porous media. Int J Numer Anal Methods Geomech 27:183–206

    Article  MATH  Google Scholar 

  23. Sheng D, Sloan SW, Gens A, Smith DW (2003) Finite element formulation and algorithms for unsaturated soils. Part I: theory. Int J Numer Anal Methods Geomech 27:745–765

    Article  MATH  Google Scholar 

  24. Oettl G, Stark RF, Hofstetter G (2004) Numerical simulation of geotechnical problems based on a multi-phase finite element approach. Comput Geotech 31:643–664

    Article  Google Scholar 

  25. Stelzer R, Hofstetter G (2005) Adaptive finite element analysis of multi-phase problems in geotechnics. Comput Geotech 32:458–481

    Article  Google Scholar 

  26. Callari C, Abati A (2009) Finite element methods for unsaturated porous solids and their application to dam engineering problems. Comput Struct 87:485–501

    Article  Google Scholar 

  27. Khoei AR, Mohammadnejad T (2011) Numerical modeling of multiphase fluid flow in deforming porous media: a comparison between two- and three-phase models for seismic analysis of earth and rockfill dams. Comput Geotech 38:142–166

    Article  Google Scholar 

  28. Lucy L (1977) A numerical approach to testing the fission hypothesis. Astron J 82:1013–1024

    Article  ADS  Google Scholar 

  29. Gingold RA, Monaghan JJ (1977) Smooth particle hydrodynamics: theory and applications to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  ADS  MATH  Google Scholar 

  30. Liu WK, Adee J, Jun S (1993) Reproducing kernel and wavelet particle methods for elastic and plastic problems. In: Benson DJ (ed) Advanced computational methods for material modeling. ASME Press, New York, pp 175–190

    Google Scholar 

  31. Belytschko T, Lu YY, Gu L (1994) Element free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  32. Babuska I, Melenk JM (1995) The partition of unity finite element method, technical report technical note BN-1185. University of Maryland, Institute for Physical Science and Technology

    Google Scholar 

  33. Onate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A finite point method in computational mechanics and applications to convective transport and fluid flow. Int J Numer Methods Eng 39:3839–3866

    Article  MathSciNet  MATH  Google Scholar 

  34. Mukherjee YX, Mukherjee S (1997) Boundary node method for potential problems. Int J Numer Methods Eng 40:797–815

    Article  MATH  Google Scholar 

  35. Atluri SN, Zu T (1998) A new mesh-less local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu GR, Gu YT (1999) A point interpolation method. In: Proceedings of the fourth Asia–Pacific conference on computational mechanics, Singapore, pp 1009–1014

  37. Liu GR, Gu YT (2000) Coupling of element free Galerkin method with boundary point interpolation method. In: Atluri SN, Brust FW (eds) Advanced in computational engineering and science, ICES’2K. Tech Science Press, Los Angeles, pp 1427–1432

    Google Scholar 

  38. Zhang X, Liu XH, Song KZ, Lu MW (2001) Least squares collocation meshless method. Int J Numer Methods Eng 51:1089–1100

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang JG, Liu GR (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54:1623–1648

    Article  MATH  Google Scholar 

  40. Wang JG, Liu GR, Wu YG (2001) A point interpolation method for simulating dissipation process of consolidation. Comput Methods Appl Mech Eng 190:5907–5922

    Article  ADS  MATH  Google Scholar 

  41. Wang JG, Liu GR, Lin P (2002) Numerical analysis of Biot’s consolidation process by radial point interpolation method. Int J Solids Struct 39:1557–1573

    Article  MATH  Google Scholar 

  42. Murakami A, Setsuyasu T, Arimoto S (2005) MeshFree method for soil–water coupled problem within finite strain and its numerical validity. Soils Found 45:145–154

    Google Scholar 

  43. Oliaei MN, Soga K, Pak A (2009) Some numerical issues using element-free Galerkin meshless method for coupled hydro-mechanical problems. Int J Numer Anal Methods Geomech 33:915–938

    Article  MATH  Google Scholar 

  44. Hua L (2010) Stable element-free Galerkin solution procedures for the coupled soil-pore fluid problem. Int J Numer Methods Eng 86:1000–1026

    Article  Google Scholar 

  45. Samimi S, Pak A (2012) Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using element free Galerkin (EFG) method. Comput Geotech 46:75–83

    Article  Google Scholar 

  46. Iske A, Käser M (2005) Two-phase flow simulation by AMMoC, an adaptive mesh-free method of characteristics. Comput Model Eng Sci 7:133–148

    MATH  Google Scholar 

  47. Liu X, Xiao YP (2006) Meshfree numerical solution of two-phase flow through porous media. In: Liu GR et al (eds) Computational methods. Springer, Netherlands, pp 1547–1553

    Chapter  Google Scholar 

  48. Samimi S, Pak A (2014) A novel three-dimensional element free Galerkin (EFG) code for simulating two-phase fluid flow in porous materials. Eng Anal Bound Elem 39:53–63

    Article  MathSciNet  MATH  Google Scholar 

  49. Modaressi H, Aubert P (1998) Element-free Galerkin method for deforming multiphase porous media. Int J Numer Methods Eng 42:313–340

    Article  MATH  Google Scholar 

  50. Khoshghalb A, Khalili N (2011) Fully coupled analysis of unsaturated porous media using a meshfree method. In: Alonso Gens (ed) Unsaturated soils. Taylor & Francis Group, London, pp 1041–1047

    Google Scholar 

  51. Khoshghalb A, Khalili N (2012) A meshfree method for fully coupled analysis of flow and deformation in unsaturated porous media. Int J Numer Anal Methods Geomech. doi:10.1002/nag.1120

    Google Scholar 

  52. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley, Chichester

    MATH  Google Scholar 

  53. Liu GR (2003) Meshfree methods-moving beyond the finite element method. CRC Press, Boca Raton

    Google Scholar 

  54. Liakopoulos AC (1965) Transient flow through unsaturated porous media, Ph.D. thesis, University of California, Berkeley, CA

  55. Fast Lagrangian analysis of continua manual. Itasca, FLAC version 4.0 manual

  56. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  57. Abeele WV, Wheeler ML, Burton BW (1981) Geohydrology of bandelier tuff, Los Alamos National Laboratory Report LA-8962

  58. Abeele WV (1984) Hydraulic testing of bandelier tuff, Los Alamos National Laboratory Report LA-10037

  59. Kool J, van Genuchten MT (1991) HYDRUS. A one dimensional variably saturated flow and transport model, including hysteresis and root water uptake version 3.3, US Salinity Laboratory Technical Report, US Department of Agriculture, Riverside, CA, USA

  60. Forsyth PA, Wu YS, Pruess K (1995) Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media. Adv Water Resour 18:25–38

    Article  ADS  Google Scholar 

  61. Gawin D, Baggio P, Schrefler BA (1995) Coupled heat, water and gas flow in deformable porous media. Int J Numer Methods Fluids 20:969–987

    Article  MATH  Google Scholar 

  62. Gawin D, Schrefler BA (1996) Thermo-hydro-mechanical analysis of partially saturated porous materials. Eng Comput 13:113–143

    Article  MATH  Google Scholar 

  63. Klubertanz G, Laloui L, Vulliet L (1997) Numerical modeling of unsaturated porous media as a two and three phase medium: a comparison. In: Yuan J-X (ed) Computer methods and advances in geomechanics. Balkema, Rotterdam, pp 1159–1164

  64. Brooks RH, Corey AT (1964) Hydraulic properties of porous media, Colorado State University Hydrology Paper 3, Fort Collins, CO: State University

Download references

Acknowledgments

The authors really appreciate the financial support provided by the “Iran National Science Foundation (INSF)” under the contract number 90008174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soodeh Samimi.

Appendix

Appendix

The nodal matrices and vectors in Eq. (27) are defined as:

$$ C_{11\,IJ} = \int\limits_{\Omega } {B_{I}^{T} \,D_{T} \,B_{J} \,d\Omega } $$
(32)
$$ C_{u\,IJ}^{\alpha } = \int\limits_{{\Gamma_{u} }} {\Phi_{I}^{T} \,\alpha_{pu} \,\Phi_{J} \,d\Gamma } $$
(33)
$$ C_{12\,IJ} = \int\limits_{\Omega } {B_{I}^{T} \,\alpha \,m\,\left[ {s_{w} + p_{c} \,{{\partial s_{w} } \mathord{\left/ {\vphantom {{\partial s_{w} } {\partial p_{c} }}} \right. \kern-0pt} {\partial p_{c} }}} \right]\,\varphi_{J} \,d\Omega } $$
(34)
$$ C_{13\,IJ} = \int\limits_{\Omega } {B_{I}^{T} \,\alpha \,m\,\left[ {\left( {1 - s_{w} } \right) - p_{c} \,{{\partial s_{w} } \mathord{\left/ {\vphantom {{\partial s_{w} } {\partial p_{c} }}} \right. \kern-0pt} {\partial p_{c} }}} \right]\,\varphi_{J} \,d\Omega } $$
(35)
$$ F_{u\,I} = \int\limits_{\Omega } {\Phi_{I}^{T} \,\rho g\,d\Omega + } \int\limits_{{\Gamma_{\sigma } }} {\Phi_{I}^{T} \,\bar{t}\,d\Gamma } $$
(36)
$$ F_{u\,I}^{\alpha } = \int\limits_{{\Gamma_{u} }} {\Phi_{I}^{T} \,\alpha_{pu} \,\bar{u}\,d\Gamma } $$
(37)
$$ C_{21\,IJ} = \int\limits_{\Omega } {\phi_{I} \,\alpha \,s_{w} \,m^{T} \,B_{J} \,d\Omega } $$
(38)
$$ C_{22\,IJ} = \int\limits_{\Omega } {\phi_{I} \,\left[ {s_{w} \frac{\alpha - n}{{K_{s} }}\left( {s_{w} + \frac{{\partial s_{w} }}{{\partial p_{c} }}p_{c} } \right) + \frac{{n\,s_{w} \,}}{{K_{w} }} - n\frac{{\partial s_{w} }}{{\partial p_{c} }}} \right]\,\varphi_{J} \,d\Omega } $$
(39)
$$ C_{23\,IJ} = \int\limits_{\Omega } {\phi_{I} \,\left[ {s_{w} \frac{\alpha - n}{{K_{s} }}\left( {1 - s_{w} - \frac{{\partial s_{w} }}{{\partial p_{c} }}p_{c} } \right) +\, n\frac{{\partial s_{w} }}{{\partial p_{c} }}} \right]\,\varphi_{J} \,d\Omega } $$
(40)
$$ K_{22\,IJ} = \int\limits_{\Omega } {B_{pI}^{T} \,\frac{{k\,k_{rw} \,}}{{\mu_{w} }}\,B_{pJ} \,d\Omega } $$
(41)
$$ K_{{p_{w} \,IJ}}^{\alpha } = \int\limits_{{\Gamma_{{p_{w} }} }} {\varphi_{I} \,\alpha_{{pp_{w} }} \,\varphi_{J} \,d\Gamma } $$
(42)
$$ F_{{p_{w} \,I}} = \int\limits_{\Omega } {B_{pI}^{T} \,\frac{{k\,k_{rw} }}{{\mu_{w} }}\rho_{w} g\,d\Omega} \, - \int\limits_{{\Gamma_{{q_{w} }} }} {\varphi_{I} \,\bar{q}_{w} \,d\Gamma } $$
(43)
$$ F_{{p_{w} \,I}}^{\alpha } = \int\limits_{{\Gamma_{{p_{w} }} }} {\varphi_{I} \,\alpha_{{pp_{w} }} \,\bar{p}_{w} \,d\Gamma } $$
(44)
$$ C_{31\,IJ} = \int\limits_{\Omega } {\varphi_{I} \,\alpha \,\left( {1 - s_{w} } \right)\,m^{T} \,B_{J} \,d\Omega } $$
(45)
$$ C_{32\,IJ} = \int\limits_{\Omega } {\varphi_{I} \,\left[ {\left( {1 - s_{w} } \right)\frac{\alpha - n}{{K_{s} }}\left( {s_{w} + \frac{{\partial s_{w} }}{{\partial p_{c} }}p_{c} } \right) +\, n\frac{{\partial s_{w} }}{{\partial p_{c} }}} \right]\,\varphi_{J} \,d\Omega } $$
(46)
$$ C_{33\,IJ} = \int\limits_{\Omega } {\varphi_{I} \,\left[ {\left( {1 - s_{w} } \right)\frac{\alpha - n}{{K_{s} }}\left( {1 - s_{w} - \frac{{\partial s_{w} }}{{\partial p_{c} }}p_{c} } \right) -\, n\frac{{\partial s_{w} }}{{\partial p_{c} }} + \frac{{n\,\left( {1 - s_{w} } \right)}}{{K_{nw} }}} \right]\,\varphi_{J} \,d\Omega } $$
(47)
$$ K_{33\,IJ} = \int\limits_{\Omega } {B_{pI}^{T} \,\frac{{k\,k_{rnw} \,}}{{\mu_{nw} }}\,B_{pJ} \,d\Omega } $$
(48)
$$ K_{{p_{nw} \,IJ}}^{\alpha } = \int\limits_{{\Gamma_{{p_{nw} }} }} {\varphi_{I} \,\alpha_{{pp_{nw} }} \,\varphi_{J} \,d\Gamma } $$
(49)
$$ F_{{p_{nw} \,I}} = \int\limits_{\Omega } {B_{pI}^{T} \,\frac{{k\,k_{rnw} }}{{\mu_{nw} }}\rho_{nw} g\,d\Omega} \, - \int\limits_{{\Gamma_{{q_{nw} }} }} {\varphi_{I} \,\bar{q}_{nw} \,d\Gamma } $$
(50)
$$ F_{{p_{nw} \,I}}^{\alpha } = \int\limits_{{\Gamma_{{p_{nw} }} }} {\varphi_{I} \,\alpha_{{pp_{nw} }} \,\bar{p}_{nw} \,d\Gamma } $$
(51)

where m = {1, 1,1, 0, 0, 0}T.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samimi, S., Pak, A. A three-dimensional mesh-free model for analyzing multi-phase flow in deforming porous media. Meccanica 51, 517–536 (2016). https://doi.org/10.1007/s11012-015-0231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0231-z

Keywords

Navigation